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Causal Inference
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Causal Inference

⇒ Effect of a policy/intervention/treatment T on an outcome Y

• What is the effect of smoking on COVID-19 mortality rate ?

• Does Aspirin cause my headaches to disappear ?

• What is the effect of hydrochloroquine on mortality ?

• What is the impact of an advertising campaign ?

• What is the effect of online classes on student performance ?

• How does 4 days work week affect the economy ?
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Causal Inference

We want to know if there is a causation and not just a correlation

”People who have a lighter tend to have a smaller life expectancy”
3



Causal Inference

”People who have a lighter tend to have a smaller life expectancy”

⇒ N i.i.d. ( Xi︸︷︷︸
covariates

,

treatment︷︸︸︷
Ti , Yi︸︷︷︸

outcome

) ∈ Rd × {0, 1} × R× R

Covariates Treatment Outcome Potential outcomes

X1 X2 X3 T Y Y(0) Y(1)

1.1 20 F 1 67 ? 67

6 45 F 0 83 83 ?

0 15 M 1 57 ? 57

. . . . . . . . . . . . . . .

12 52 M 0 100 100 ?
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Potential outcomes

⇒ N i.i.d. ( Xi︸︷︷︸
covariates

,

treatment︷︸︸︷
Ti , Yi︸︷︷︸

outcome

) ∈ Rd × {0, 1} × R× R

Covariates Treatment Outcome Potential outcomes

X1 X2 X3 T Y Y(0) Y(1)

1.1 20 F 1 67 ? 67

6 45 F 0 83 83 ?

0 15 M 1 57 ? 57

. . . . . . . . . . . . . . .

12 52 M 0 100 100 ?

Our goal is to compute the individual causal effect of the treatment:

∆i = Yi (1)− Yi (0)

However we can never observed ∆i (only one observed outcome/indiv)
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Average Treatment Effect

Our goal is to compute the individual causal effect of the treatment:

∆i = Yi (1)− Yi (0)

In order to fixe the fundamental problem of causal inference define the

Average Treatment Effect.

Average Treatment Effect (ATE)

τ = E[∆] = E[Y (1)− Y (0)]

τ is also referred as the risk difference.

⇒ depends on the population

The ATE is the difference of the average outcome had everyone gotten

treated and the average outcome had nobody gotten the treatment.

6



Causal Inference

We now want to estimate τ :

τ = E[Y (1)− Y (0)]

= E[Y (1)]− E[Y (0)]

?
= E[Y |T = 1]− E[Y |T = 0]

”People who have a lighter tend to have a smaller life expectancy”

T = 1 T = 0
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Randomized Controlled Trial

”Do people who have a lighter tend to have a smaller life expectancy ?”
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Randomized Controlled Trial

”Do people who have a lighter tend to have a smaller life expectancy ?”
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Randomized Controlled Trial

”Do people who have a lighter tend to have a smaller life expectancy ?”

assumptions

• Yi = TiYi (1) + (1− Ti )Yi (0) (consistency)

• Ti ⊥⊥ {Yi (0),Yi (1),Xi} (random treatment assignment)

Flip a coin to assign the treatment
12



Randomized Controlled Trial

Identifiability assumptions

• Yi = TiYi (1) + (1− Ti )Yi (0) (consistency)

• Ti ⊥⊥ {Yi (0),Yi (1),Xi} (random treatment assignment)

Flip a coin to assign the treatment

T = 1 T = 0

We now have τ = E[∆i ] = E[Yi (1)]− E[Yi (0)]

= E[Yi (1)|Ti = 1]− E[Yi (0)|Ti = 0]

= E[Yi |Ti = 1]− E[Yi |Ti = 0]

=
1

P(Ti = 1)
E[YiTi ]−

1

P(Ti = 0)
E[Yi (1− Ti )]

We say that τ is identifiable if it can be computed using a infinite number of

observations from it.
13



Randomized Controlled Trial

Identifiability assumptions

• Yi = TiYi (1) + (1− Ti )Yi (0) (consistency)

• Ti ⊥⊥ {Yi (0),Yi (1),Xi} (random treatment assignment)

Flip a coin to assign the treatment

We now have τ = E[∆i ] = E[Yi (1)]− E[Yi (0)]

=
1

P(Ti = 1)
E[YiTi ]−

1

P(Ti = 0)
E[Yi (1− Ti )]

Covariates Treatment Outcome Potential outcomes

X1 X2 X3 T Y Y(0) Y(1)

1.1 20 F 1 67 ? 67

6 45 F 0 83 83 ?

. . . . . . . . . . . . . . .

12 52 M 0 100 100 ?

τ̂DM = 1
n1

∑
Ti=1 Yi − 1

n0

∑
Ti=0 Yi ; τ = mean(blue)-mean(red)
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Randomized Controlled Trial

Identifiability assumptions

• Yi = TiYi (1) + (1− Ti )Yi (0) (consistency)

• Ti ⊥⊥ {Yi (0),Yi (1),Xi} (random treatment assignment)

Flip a coin to assign the treatment

Difference-in-means estimator

τ̂DM =
1

n1

n∑
i=1

TiYi −
1

n0

n∑
i=1

(1− Ti )Yi

where n1 =
∑n

i=1 Ti and n0 =
∑n

i=1 1− Ti

τ̂DM unbiased and
√
n-consistent

√
n (τ̂DM − τ)

d−−−→
n→∞

N (0,VDM)

with VDM = Var(Yi (0))
P(Ti=0) + Var(Yi (1))

P(Ti=1) .
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Data sources & evidences to estimate the treatment effect

Randomized Controlled Trial (RCT)

• gold standard (allocation )

• same covariate distributions of

treated and control groups

⇒ High internal validity

• expensive, long, ethical limitations

• small sample size: restrictive

inclusion criteria

⇒ No personalized medicine

• trial sample different from the

population eligible for treatment

⇒ Low external validity

Observational data

• “big data”: low quality

• lack of a controlled design opens

the door to confounding bias

⇒ Low internal validity

• low cost con

• large amounts of data (registries,

biobanks, EHR, claims)

⇒ patient’s heterogeneity

• representative of the target

populations

⇒ High external validity
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Assumption for ATE identifiability in observational data

Unconfoundedness

{Yi (0),Yi (1)} ⊥⊥ Ti |Xi

Measure all possible confounders

Unobserved confounders make it impossible to separate correlation and

causality when correlated to both the outcome and the treatment.

17



G-formula estimator

Average treatment effect (ATE): τ = E[∆i ] = E[Yi (1)− Yi (0)]

Identifiability assumptions in observational data

• {Yi (0),Yi (1)} ⊥⊥ Ti |Xi (Unconfoundedness)

• Yi = TiYi (1) + (1− Ti )Yi (0) (Consistency)

Using the law of total expectation,

τ = E[∆i ] = E[Yi (1)]− E[Yi (0)]

= E[E[Yi (1)|X ]]− E[E[Yi (1)|X ]] Law of total probability

= E [E[Yi (1)|Ti = 1,X ]]− E [E[Yi (0)|Ti = 0,X ]] Unconfoundedness

= E [E[Yi |Ti = 1,X ]]− E [E[Yi |Ti = 0,X ]] Consistency

G-formula estimator

τ̂G =
1

n

n∑
i=1

µ̂(1)(Xi )− µ̂(0)(Xi )

where µ(t)(X ) = E [Y |T = t,X ]
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Assumption for ATE identifiability in observational data

Overlap

Propensity score: probability of treatment given observed covariates.

e(x) , P(Ti = 1 |Xi = x) ∀ x ∈ X .

We assume overlap, i.e. η < e(x) < 1− η, ∀ x ∈ X and some η > 0
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Inverse-propensity weighting estimator

Average treatment effect (ATE): τ = E[∆i ] = E[Yi (1)− Yi (0)]

Identifiability assumptions in observational data

• {Yi (0),Yi (1)} ⊥⊥ Ti |Xi (Unconfoundedness)

• η < e(x) < 1− η, ∀ x ∈ X and some η > 0 (Overlap)

• Yi = TiYi (1) + (1− Ti )Yi (0) (Consistency)

Propensity score (proba treated|covariates): e(x) = P(Ti = 1 |Xi = x)

IPW estimator

τ̂IPW =
1

n

n∑
i=1

(
TiYi

ê(Xi )
− (1− Ti )Yi

1− ê(Xi )

)

τ̂IPW unbiased and
√
n-consistent

√
n (τ̂IPW − τ)

d−−−→
n→∞

N (0,VIPW )

with VIPW = E

[
(Y (0))2

1−e(X )
+

(Y (1))2

e(X )

]
− τ 2 when ê(·) is consistent
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− τ 2 when ê(·) is consistent

20



Augmented Inverse-propensity weighting estimator

Average treatment effect (ATE): τ = E[∆i ] = E[Yi (1)− Yi (0)]

Identifiability assumptions in observational data

• {Yi (0),Yi (1)} ⊥⊥ Ti |Xi (Unconfoundedness)

• η < e(x) < 1− η, ∀ x ∈ X and some η > 0 (Overlap)

• Yi = TiYi (1) + (1− Ti )Yi (0) (Consistency)

Model Treatment on Covariates e(x) = P(Wi = 1 |Xi = x)

Model Outcome on Covariates µ(w)(x) = E[Yi (w) |Xi = x ]

AIPW estimator

τ̂AIPW = 1
n

∑n
i=1

(
µ(1)(Xi )− µ(0)(Xi ) +

Ti .(Yi−µ(1)(Xi ))

e(Xi )
− (1−Ti )(Yi−µ(0)(Xi ))

1−e(Xi )

)
τ̂AIPW unbiased and

√
n-consistent

√
n (τ̂AIPW − τ)

d−−−→
n→∞

N (0,VAIPW )

with V ∗AIPW = E

[
(Y (1)−µ1(X ))

2

e(X )

]
+ E

[
(Y (0)−µ0(X ))2

1−e(X )

]
+ Var[µ1(X )− µ0(X )].
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Augmented Inverse-propensity weighting estimator

Model Treatment on Covariates e(x) = P(Wi = 1 |Xi = x)
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Ti .(Yi−µ(1)(Xi ))
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⇒ τ̂AIPW is consistent if either the µ̂(w)(x) are consistent or ê(x) is consistent.
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Augmented Inverse-propensity weighting estimator
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Summary

When measuring a causal effect, removing all confounding bias can be

done two different ways:
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Other ways to measure the causal effect

24



Estimating the risk ratio with observational data

We want to estimate the risk ratio : τRR = E[Yi (1)]
E[Yi (0)]

Identifiability assumptions in observational data

• {Yi (0),Yi (1)} ⊥⊥ Ti |Xi (Unconfoundedness)

• η < e(x) < 1− η, ∀ x ∈ X and some η > 0 (Overlap)

• Yi = TiYi (1) + (1− Ti )Yi (0) (Consistency)

• ∀i , j YiYj ≥ 0 (Name ?)

Estimating the ratio is harder:

τRR =
E[Yi (1)]

E[Yi (0)]
6= E

[
Yi (1)

Yi (0)

]
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Estimating the risk ratio with observational data

⇒ Using M-estimation, we can solve this issue and get asymptotical

normality
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Estimating the risk ratio with observational data

⇒ Using M-estimation, we can solve this issue and get asymptotical

normality

Note that VX is not symmetrical anymore: Estimating E[Yi (1)]
E[Yi (0)] or E[Yi (0)]

E[Yi (1)]

will not give the same confidence intervals!
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Different treatment measures give different impressions

Let’s suppose an RCT was conducted on a given population:

• Y = 1 stroke in 5 years and Y = 0 no stroke

• RD: treatment reduces by 0.06 the probability to suffer from a stroke

• RR: the treated has 0.93 × the risk of having a stroke comp. with the

control

• SR: there is an increased chance of not having a stroke when treated

compared to the control by a factor 0.27.

• NNT: one has to treat 17 people to prevent one additional stroke

• OR: people who had a stroke are 0.26 less likely to be treated

28
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Different treatment measures give different impressions

Let’s suppose two RCTs were conducted on these two subpopulations:

• X = 1 high blood pressure, X = 0 moderate blood pressure.

• Y = 1 stroke in 5 years and Y = 0 no stroke

29



Measures’ properties

We define τ(X ) := E[Y (1) − Y (0)|X ]

Direct collapsibility

E [τ(X )] = τ

⇒ Only τRD = E[Y (1) − Y (0)] is directly collapsible:

τ RD = pR(X = 1)× τ RD

R (X = 1) + pR(X = 0)× τ RD

R (X = 0)

−0.06 = −0.4× 0.091− 0.029× 0.909

Weights are equal to the population’s proportions
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Measures’ properties

Collapsibility (require knowing Y (0))

E [w(X ,P(X ,Y (0))) τ(X )] = τ with w ≥ 0, E [w(X ,P(X ,Y (0)))] = 1

Where τ(X ) := E[Y (1) − Y (0)|X ]

Logic respecting

τ ∈
[
min
x

(τ(x)),max
x

(τ(x))
]
.
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Measures’ properties

Collapsibility (require knowing Y (0))

E [w(X ,P(X ,Y (0))) τ(X )] = τ with w ≥ 0, E [w(X ,P(X ,Y (0)))] = 1

Logic respecting

τ ∈
[
min
x

(τ(x)),max
x

(τ(x))
]
.

Measure Collapsible Logic-respecting

Risk Difference (RD) Yes Yes

Number Neeeded to Treat (NNT) No Yes

Risk Ratio (RR) Yes Yes

Survival Ratio (SR) Yes Yes

Odds Ratio (OR) No No

32



Leverage both RCT and observational data

Average Treatment Effect (ATE)

τ = E[∆] = E[Y (1)− Y (0)]

τ is also referred as the risk difference.

⇒ depends on the population

The ATE is the difference of the average outcome had everyone gotten

treated and the average outcome had nobody gotten the treatment.

Covariates distribution not the same in the RCT & target pop:

pR(x) 6= pT(x)⇒ τR := ER[Y (1)− Y (0)]︸ ︷︷ ︸
ATE in the RCT

6= ET[Y (1)− Y (0)] := τT︸ ︷︷ ︸
Target ATE

33



Leverage both RCT and observational data

RCT

+ No confounding

− Trial sample different from the

population eligible for treatment

(big) Observational data

− Confounding

+ Representative of the

target population

τ RD

R = pR(X = 1)× τ RD

R (X = 1) + pR(X = 0)× τ RD

R (X = 0)

τ RD

T = pT(X = 1)× τ RD

R (X = 1) + pT(X = 0)× τ RD

R (X = 0)
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Generalization task from a RCT to a target population

Two data sources:

• A trial of size n with pR (x) the

probability of observing

individual with X = x ,

• A sample of the target

population of interest – for e.g.

a national cohort (resp. m and

pT (x)).

Transportability (Ignorability on trial participation)

∀w ∈ {0, 1} ER[Y (w) | X ] = ET[Y (w) | X ]

Overlap assumption

∀x ∈ X, pR(x) > 0 and supp(PT(X )) ⊂ supp(PR(X ))
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Generalization of conditional outcome: identifiability

Average Treatment Effect: τT = ET[Yi (1)− Yi (0)],∀t ∈ {0, 1}

ET [Y (t)] = ET [ET [Y (t) | X ]] Law of total expectation

= ET [ER [Y (t) | X ]] Ignorability

= ET [ER[Y (t) | X = x ,T = t]] Random treatment

= ET [ER[Y | X = x ,T = t]]︸ ︷︷ ︸
µt(x)

Consistency

Regression adjustment - plug-in gformula

τ̂g ,n,m =
1

m

∑
i∈T

(µ̂1,n(Xi )− µ̂0,n(Xi ))
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Plug-in gformula: difference between conditional mean

Plug-in gformula

τ̂g ,n,m =
1

m

n+m∑
i=n+1

(µ̂1,n(Xi )− µ̂0,n(Xi )) ,

µt(x) = ER[Y | X = x ,T = t]

Covariates Treat Outcomes

Set S X1 X2 X3 T Y

1 R 1 1.1 20 9.4 1 24.1

R 1 -6 45 8.3 0 26.3

n R 1 0 15 6.2 1 23.5

n + 1 O ? -1 35 7.1

n + 2 O ? -2 52 2.4

O ? . . .

n + m O ? -2 22 3.4

• Fit two models of the outcome (Y ) on covariates (X )

among trial participants (R) for treated and for control to get µ̂1,n & µ̂0,n

• Apply these models to the covariates in the target pop , i.e., marginalize

over the covariate distribution of the target pop, gives the expected outcomes

• Compute the differences between the expected outcomes on the target

population µ̂1,n(·) - µ̂0,n(·)
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Plug-in gformula: difference between conditional mean

Plug-in gformula

τ̂g ,n,m =
1

m

n+m∑
i=n+1

(µ̂1,n(Xi )− µ̂0,n(Xi )) ,

µt(x) = ER[Y | X = x ,T = t]

Covariates Treat Outcomes

Set S X1 X2 X3 T Y (0) Y(1)

1 R 1 1.1 20 9.4 1 24.1

R 1 -6 45 8.3 0 26.3

n R 1 0 15 6.2 1 23.5

n + 1 O ? -1 35 7.1 µ̂0(Xn+1) µ̂1(Xn+1)

n + 2 O ? -2 52 2.4 µ̂0(Xn+2) µ̂1(Xn+2)

O ? . . . . . . . . . . . .

n + m O ? -2 22 3.4 µ̂0(Xn+m) µ̂1(Xn+m)

• Fit two models of the outcome (Y ) on covariates (X )

among trial participants (R) for treated and for control to get µ̂1,n & µ̂0,n

• Apply these models to the covariates in the target pop , i.e., marginalize

over the covariate distribution of the target pop, gives the expected outcomes

• Compute the differences between the expected outcomes on the target

population µ̂1,n(·) - µ̂0,n(·)
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Assumptions for identifiability with fewer covariates

Transportability (Ignorability on trial participation)

∀t ∈ {0, 1} ER[Y (t) | X ] = ET[Y (t) | X ]

Transportability of the CATE

τR(X )︸ ︷︷ ︸
ER[Y (1)−Y (0)|X ]

= τT(X )︸ ︷︷ ︸
ET[Y (1)−Y (0)|X ]
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Identifiability and estimation for generalization: weighting

τT = ET[Yi (1)− Yi (0)] = ET[ET[Yi (1)− Yi (0)|X ]]

= ET [τT(X )] = ET [τR(X )] Transportability CATE

= ER

[
pT(X )

pR(X )
τR(X )

]

IPSW: inverse propensity sampling weighting

τ̂IPSW ,n,m =
1

n

∑
i∈R

p̂T(Xi )

p̂R(Xi )

(
TY

eR(x)
− (1− T )Y

1− eR(x)

)
,

eR(x) = P(T = 1 | X = x) = 0.5.

Re-weight, so that the trial follows the target sample’s distribution: if

proba to be in trial when old is small, then up-weight old in trial
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Generalization estimators: illustrative schematics

The trial findings τ̂1,n would over-estimate the target treatment effect τT
Left: the plug-in G-formula model the response using the RCT observation

Right: IPSW weight the RCT observations

fX (fX|S=1) density of the target (resp. trial) pop., µ̂a,n(·) fitted response surface with n trial obs.

Theorem - consistency1

Under assumptions, τ̂IPSW,n,m and τ̂g,n,m converges toward τT in L1 norm,

τ̂IPSW,n,m
L1

−→
n,m→∞

τT

τ̂g,n,m
L1

−→
n,m→∞

τT

1Colnet, J.J et al. 2022. Generalizing a causal effect: sensitivity analysis and missing covariates.

Journal of Causal Inference.
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Conclusion

Generalizing Conditional Outcome Local effects

Assumption ER[Y (w) | X ] = ET[Y (w) | X = x] τR(X ) = τT(X )

Identification ET [Y (w)] = ET [ER [Y (w) | X ]] ER

[
pT(X )
pR(X )

wT(Y (0),X ) τR(X )
]

Estimator 1
m

∑n+m
i=n+1 (µ̂1,n(Xi )− µ̂0,n(Xi )) 1

n

∑
i∈R

p̂T(Xi )
p̂R(Xi )

(
TY
eR(x)

− (1−T )Y
1−eR(x)

)

• Depending on the assumptions, either conditional outcome or local treatment effect

can be generalised

• Generalizing local effects only for collapsible measure, information on Y (0) with

weights required

⇒ My goal is to do the same for the risk ratio!
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Thanks for your attention!
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Appendix
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Other ways to measure the causal effect

To simplify things, suppose Y ∈ {0, 1} and that our data is from an RCT:

E
[
Y (1)

]
= P(Y (1) = 1) E

[
Y (0)

]
= P(Y (0) = 1)

Risk difference:

τRD = E
[
Y (1)

]
− E

[
Y (0)

]
=

A

A + B
− C

C + D

How much higher is the risk of the outcome among people who are

exposed to the risk factor?
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Other ways to measure the causal effect

To simplify things, suppose Y ∈ {0, 1} and that our data is from an RCT:

E
[
Y (1)

]
= P(Y (1) = 1) E

[
Y (0)

]
= P(Y (0) = 1)

Risk difference:

τRD = E
[
Y (1)

]
− E

[
Y (0)

]
=

50

50 + 50
− 25

25 + 75
= 0.25

People exposed to high levels of the toxic pollutant had a 25 percentage

point higher chance of dying within the next 20 years
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Other ways to measure the causal effect

To simplify things, suppose Y ∈ {0, 1} and that our data is from an RCT:

E
[
Y (1)

]
= P(Y (1) = 1) E

[
Y (0)

]
= P(Y (0) = 1)

Risk ratio:

τRR =
E
[
Y (1)

]
E
[
Y (0)

]
=

A
A+B
C

C+D

How many times higher is the risk of the outcome among people who are

exposed to the risk factor?
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Other ways to measure the causal effect

To simplify things, suppose Y ∈ {0, 1} and that our data is from an RCT:

E
[
Y (1)

]
= P(Y (1) = 1) E

[
Y (0)

]
= P(Y (0) = 1)

Risk ratio:

τRR =
E
[
Y (1)

]
E
[
Y (0)

]
=

50
50+50

25
25+75

= 2

People exposed to high levels of toxic pollutant were twice as likely to die

within the next 20 years.
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Other ways to measure the causal effect

To simplify things, suppose Y ∈ {0, 1} and that our data is from an RCT:

E
[
Y (1)

]
= P(Y (1) = 1) E

[
Y (0)

]
= P(Y (0) = 1)

Survival ratio:

τSR =
1− E

[
Y (1)

]
1− E

[
Y (0)

]
=

D
C+D
B

A+B

how many times higher is the chance of avoiding the outcome, among

people not exposed to the risk factor?
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Other ways to measure the causal effect

To simplify things, suppose Y ∈ {0, 1} and that our data is from an RCT:

E
[
Y (1)

]
= P(Y (1) = 1) E

[
Y (0)

]
= P(Y (0) = 1)

Survival ratio:

τSR =
1− E

[
Y (1)

]
1− E

[
Y (0)

]
=

75
25+75

50
50+50

= 1.5

People only exposed to low levels of this toxic pollutant were 1.5 times as

likely to survive the next 20 years.
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Other ways to measure the causal effect

To simplify things, suppose Y ∈ {0, 1} and that our data is from an RCT:

E
[
Y (1)

]
= P(Y (1) = 1) E

[
Y (0)

]
= P(Y (0) = 1)

Number needed to harm/treat:

τNNH =
1

E
[
Y (1)

]
− E

[
Y (0)

] = τ−1
RD

=
1

A
A+B −

C
C+D

How many people would need to be exposed to the risk factor, to see the

outcome in one of them?
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Other ways to measure the causal effect

To simplify things, suppose Y ∈ {0, 1} and that our data is from an RCT:

E
[
Y (1)

]
= P(Y (1) = 1) E

[
Y (0)

]
= P(Y (0) = 1)

Number needed to harm/treat:

τNNH =
1

E
[
Y (1)

]
− E

[
Y (0)

] = τ−1
RD

=
1

50
50+50 −

25
25+75

= 4

Four people would need to be exposed to high levels of the toxic

pollutant for one to die within the next 20 years, on average.
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Other ways to measure the causal effect

To simplify things, suppose Y ∈ {0, 1} and that our data is from an RCT:

E
[
Y (1)

]
= P(Y (1) = 1) E

[
Y (0)

]
= P(Y (0) = 1)

Odds ratio:

τOR =
E
[
Y (1)

]
1− E

[
Y (1)

] ( E
[
Y (0)

]
1− E

[
Y (0)

])−1

=
A

B

(
C

D

)−1

How many times higher were the odds of the outcome, in people exposed

to the risk factor?
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Other ways to measure the causal effect

To simplify things, suppose Y ∈ {0, 1} and that our data is from an RCT:

E
[
Y (1)

]
= P(Y (1) = 1) E

[
Y (0)

]
= P(Y (0) = 1)

Odds ratio:

τOR =
E
[
Y (1)

]
1− E

[
Y (1)

] ( E
[
Y (0)

]
1− E

[
Y (0)

])−1

=
50

50

(
25

75

)−1

= 3

People who died had 3 times the odds of having been exposed to high

levels of the toxic pollutant during the past 20 years.
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Causal Inference

Y (t) Vs Y |T = t
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