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Introduction to Generalization

Randomized Controlled Trials:

Treated Control

+ direct causal association

− selective population, small

sample, not always feasible

PT

Age

Age

Treatment effect 

Observational Data:

Treated Not treated

Treatment assignment 
based on covariates

+ abundant, representative

population

− confounding factors

pS(x) 6= pT(x)⇒ ATE in the RCT︸ ︷︷ ︸
>0

6= Target ATE︸ ︷︷ ︸
<0
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Problem setting: Generalization from one RCT to a Target pop.

Goal: estimate the treatment effect on the target population.

Source Obs. Covariates Treatment Outcomes Potential Outcomes

S i X 1 X 2 X 3 A Y Y (1) Y (0)

0 1 37 2.0 F 0 1.7 ?? 1.7
...

...
...

...
...

...
...

...
...

0 m 52 1.7 M 1 2.4 2.4 ??

IPW, G-formula, AIPW under Y (1),Y (0) ⊥ A | X =⇒ Strong assumption !
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Problem setting: Generalization from one RCT to a Target pop.

Generalization: estimate the treatment effect on the target population using the RCT

Source Obs. Covariates Treatment Outcomes Potential Outcomes

S i X 1 X 2 X 3 A Y Y (1) Y (0)

1 1 23 1.5 M 1 3.2 3.2 ??
...

...
...

...
...

...
...

...
...

1 n 17 2.9 M 0 1.5 ?? 1.5

0 1 37 2.0 F ?? ?? ?? ??
...

...
...

...
...

...
...

...
...

0 m 52 1.7 M ?? ?? ?? ??

Note that here we do not need the treatment and the outcome in the target population.
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The age-old question of how to report treatment effects

Risk Ratio, odds ratio, risk difference...

Which causal measure is easier to generalize?

Bénédicte Colnet Julie Josse Gaël Varoquaux Erwan Scornet

Measure Dir. collapsible Collapsible Logic-respecting

RD Yes Yes Yes

NNT No No Yes

RR No Yes Yes

SR No Yes Yes

OR No No No

e.g. Huitfeldt et al., 2021; Lapointe-Shaw et al., 2022; Liu et al., 2022; Colnet, et al. J.J. 2022;

Colnet, J.J et al. 2023; Boughdiri, J.J et al 2025; Dumas, E., Stensrud (2025) . . .

• CONSORT guidelines recommend to report all of them •
Existing studies have generalized the RD but not other causal measures. Here, we propose

A Unified Framework for the Transportability of Population-Level Causal Measures
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First moment population-level measure

• τP a 1st moment population-level1 measure if ∃ Φ : DΦ → R, DΦ ⊂ R2

τPΦ = Φ (EP [Y (1)],EP [Y (0)])

Note that a 1st moment population-level measure depends on a population P: τSΦ 6= τTΦ

Measure Effect Measure Domain DΦ

Risk Difference (RD) Φ(x , y) = x − y R2

Risk Ratio (RR) Φ(x , y) = x
y

R× R∗

Odds Ratio (OR) Φ(x , y) = x
1−x
· 1−y

y
R/{1} × R∗

NNT Φ(x , y) = 1
x−y

{(x , y) ∈ R2|x − y 6= 0}

• In contrast an individual-level measure depends on the joint distribution. Most are non identifiable

but workarounds exist2. Ex: E
[
Yi (1)
Yi (0)

]
6= E[Yi (1)]

E[Yi (0)]
or P[Y (1) > Y (0)]

1Fay & Li. (2024). Causal interpretation of the hazard ratio in RCTs. Clinical Trials.
2Even, J.J. (2025). Rethinking the win ratio: causal framework for hierarchical outcome Analysis.
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Assumptions for ATE identifiability in generalization

Overlap

∀x ∈ X, pS(x) > 0 and

supp(PT (X )) ⊂ supp(PS(X ))

X

Density

RCT
Target

supp(PS) supp(PT )

No overlap!

Intuition: Every covariate profile in the target

population must be represented in the RCT. We

cannot generalize on people not represented in S

Exchangeability in mean

∀a ∈ {0, 1} ,

ES [Y (a) | X ] = ET [Y (a) | X ]

In general ES [Y (a)] 6= ET [Y (a)] since:

PT

Age

• what about: ES [Y (a)|age] = ET [Y (a)|age] ?

• what if we have pS(weight) 6= pT(weight) ?

Intuition: X must contain all shifted and

prognostic covariates.
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Reweighting the RCT: reweight Horvitz-Thomson

Reweighted Horvitz-Thomson

τ̂Φ,wHT = Φ

(
1

n

∑
Si=1

r̂(Xi )
AiYi

π
,

1

n

∑
Si=1

r̂(Xi )
(1− Ai )Yi

1− π

)

Estimate the ratio of densities with a logistic regression

r(X ) :=
pT (X )

pS(X )
=

P(X = x |S = 0)

P(X = x |S = 1)

Bayes
=

P(S = 1)P(S = 0|X = x)

P(S = 0)P(S = 1|X = x)

P(S = 0|X = x)

P(S = 1|X = x)
= exp(x>β)

Age

Age

Age

r(X)
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Transport the RCT: G-formula

Fit models on RCT data

µ̂S
a (X ) = ES [Y |A = a,X ]

Predict on the target data

Y (a) = µ̂S
a (X ) where X ∼ PT (X )

Average over the target

τ̂Φ,tG = Φ
(

1
m

∑
i µ̂

S
1 (Xi ),

1
m

∑
i µ̂

S
0 (Xi )

)
X 1 X 2 X 3 Y (1) Y (0)

37 2.0 F µ̂S
0 (X1) µ̂S

1 (X1)
...

...
...

...
...

52 1.7 M µ̂S
0 (Xm) µ̂S

1 (Xm)

Transported G-formula

τ̂Φ,tG = Φ

(
1

m

∑
Si=0

µ̂S
(1)(Xi ),

1

m

∑
Si=0

µ̂S
(0)(Xi )

)

We use data from the RCT to train µ̂(1) and µ̂(0) using

• Linear Regressions

• Random Forests

Proposition

Under a logistic S |X and linear Y (a)|X model for

respectively the source and the outcome we have,

VOLS
Φ,tG ≤ VΦ,HT,

8
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Doubly robust estimator

Estimated equation estimator

Given estimators µ̂(a) (resp. r̂) of µ(a) (resp. r), an estimating equation estimator τ̂EE
Φ of τΦ

is given by τ̂EE
Φ = Φ(ψ̂EE

1 , ψ̂EE
0 ) where for all a ∈ {0, 1}

ψ̂EE
a :=

1

m

∑
Si=0

µ̂(a)(Xi ) +
1

n

∑
Si=1

1{A = a}
P(A = a)

r̂(Xi )(Y − µ̂(a)(Xi ))

Doubly Robust: The estimator τ̂EE
Φ is consistent as soon as either µ̂(a) = µ or r̂ = r .

Robust to miss-specification :

• Logistic model on S |X
• Non-linear model on

Y (a)|X
0.2 0.1 0.0 0.1 0.2

Risk Difference

W Horvitz-Thompson

W G-formula

T G-formula

Estimating-equation

One-step

0.8 1.0 1.2 1.4
Risk Ratio

0.0 0.5 1.0 1.5 2.0 2.5
Odds Ratio 9



Doubly robust estimator

Estimated equation estimator

Given estimators µ̂(a) (resp. r̂) of µ(a) (resp. r), an estimating equation estimator τ̂EE
Φ of τΦ

is given by τ̂EE
Φ = Φ(ψ̂EE

1 , ψ̂EE
0 ) where for all a ∈ {0, 1}

ψ̂EE
a :=

1

m

∑
Si=0

µ̂(a)(Xi ) +
1

n

∑
Si=1

1{A = a}
P(A = a)

r̂(Xi )(Y − µ̂(a)(Xi ))

Doubly Robust: The estimator τ̂EE
Φ is consistent as soon as either µ̂(a) = µ or r̂ = r .

Robust to miss-specification :

• Non-Logistic model on

S |X
• Linear model on Y (a)|X

0.150 0.125 0.100 0.075 0.050 0.025
Risk Difference

W Horvitz-Thompson

W G-formula

T G-formula

Estimating-equation

One-step

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Risk Ratio

0.6 0.7 0.8 0.9
Odds Ratio
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Relaxing exchangeability in mean

Exchangeability in mean

∀a ∈ {0, 1} ,

ES [Y (a) | X ] = ET [Y (a) | X ]

X contains shifted prognostic variables

Exchangeability in effect measure

For a given φ, we have

τRΦ (xc) = τTΦ (xc)

Xc contains all shifted effect modifiers. Xc ⊆ X

If Y (0) is known in the target population, then

the target treatment effect (for a given Φ) is

identifiable:

τTΦ = Φ
(
ET

[
Γ
(
τSΦ(Xc), µT

(0)(Xc)
)]
,ET

[
Y (0)

])

where Γ is the inverse of ψ1 7→ Φ(ψ1, ψ0) It

leads naturally to:

• Weighted estimators

• Regression-based estimators

• Doubly robust estimators combining both

approaches

10



Estimate the treament effect on the Target pop.

Observational studies Gen with Conditional Outcome Gen with Local effects

Ass. Y (1),Y (0) ⊥ A | X ER[Y (a) | X ] = ET[Y (a) | X ] τRΦ (x) = τTΦ (x)

Var. confounding variables shifted prognostic covariates shifted effect modifiers

Y (0) in the target population

Meas. RD, RR3 but can be extended RD, RR, NNT, OR, SR, . . . only Φ

3Boughdiri, J.J., Scornet. Estimating Risk Ratios in Causal Inference. ICML2025
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Generalizing CRASH-3 findings to the Traumabase population

CRASH-3 trial (Mostly Pakistan)

• Randomized trial (n ≈ 9,000)

• Patients with TBI, GCS ≤ 12, within 3h

• Treatment: Tranexamic Acid (TXA)

• Outcome: Head injury-related death at

28 days

Traumabase cohort (France)

• Observational registry (m ≈ 8,200)

• Selected CRASH-3-eligible patients

• Treatment: Tranexamic Acid (TXA)

• Deleterious/No evidence

0.04 0.02 0.00 0.02 0.04
Risk Difference

W Horvitz-Thompson

T G-formula

Estimating-equation

One-step

T -formula

 Estimating-equation

 One-step
0.8 0.9 1.0 1.1 1.2

Risk Ratio
0.7 0.8 0.9 1.0 1.1 1.2

Odds Ratio

3Colnet, J.J et al (2023). Causal inference methods for combining randomized trials and observational studies: a review. 12



Conclusion & Perspectives

• Identification relies on:

• Exchangeability in mean/effect measure: ES[Y (a) | X ] = ET[Y (a) | X ] or τSΦ (x) = τTΦ (x)

• Overlap: supp(PT (X )) ⊆ supp(PS(X ))

What we did:

• Generalized RD, RR and OR under Overlap and Exchangeability.

• Build and studied weighted, regression and doubly robust estimators.

• Applied this to transported the effect of TXA using CRASH-3 and Traumabase.

Perspectives:

• Relaxing overlap.

• Build a R and Python package.

• Meta-analysis [Berenfeld et al., 2025]
13



Thank you!
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