Generalization of the Risk Difference, Risk Ratio, OR, etc... from one trial to a target population.

Ahmed Boughdiri (INRIA, Premedical Team)

A Unified Framework for the Transportability of Population-Level Causal Measures

Clément Berenfeld (INRIA, Montpellier), Julie Josse (INRIA, Montpellier) and Erwan Scornet (Sorbonne, Paris)

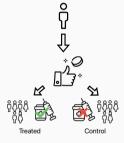
Randomized Controlled Trials:

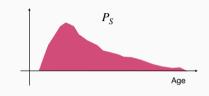


- + direct causal association
- selective population, small sample, not always feasible

1

Randomized Controlled Trials:

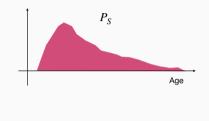




- + direct causal association
- selective population, small sample, not always feasible

Randomized Controlled Trials:

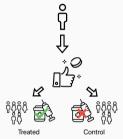
- + direct causal association
- selective population, small sample, not always feasible



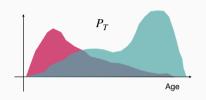
Observational Data:

- + abundant, representative population
- confounding factors

Randomized Controlled Trials:



- + direct causal association
- selective population, small sample, not always feasible

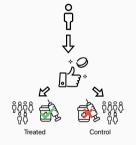


Observational Data:

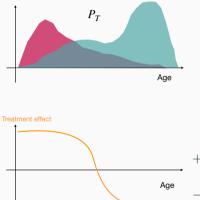
- + abundant, representative population
- $\ \ confounding \ factors$

1

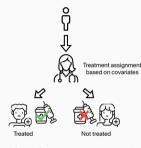
Randomized Controlled Trials:



- + direct causal association
- selective population, small sample, not always feasible



Observational Data:



- abundant, representative population
- confounding factors

$$p_{S}(x) \neq p_{T}(x) \Rightarrow \underbrace{\text{ATE in the RCT}}_{>0} \neq \underbrace{\text{Target ATE}}_{<0}$$

Problem setting: Generalization from one RCT to a Target pop.

Goal: estimate the treatment effect on the target population.

Source	Obs.	C	ovariat	es	Treatment	Outcomes	Potenti	al Outcomes
S	i	X^1	X^2	<i>X</i> ³	А	Y	Y ⁽¹⁾	Y ⁽⁰⁾
0	1	37	2.0	F	0	1.7	??	1.7
:	:	:	:	:	:	:	:	÷
0	m	52	1.7	М	1	2.4	2.4	??

IPW, G-formula, AIPW under $Y(1), Y(0) \perp A \mid X \implies$ Strong assumption!

Problem setting: Generalization from one RCT to a Target pop.

Generalization: estimate the treatment effect on the target population using the RCT

Source	Obs.	C	ovariat	es	Treatment	Outcomes	Potentia	al Outcomes
S	i	X^1	X^2	<i>X</i> ³	А	Y	Y ⁽¹⁾	Y ⁽⁰⁾
1	1	23	1.5	М	1	3.2	3.2	??
:	:	÷	÷	÷	:	:	:	:
1	n	17	2.9	М	0	1.5	??	1.5
0	1	37	2.0	F	??	??	??	??
:	:	÷	:	:	:	:	:	:
0	m	52	1.7	М	??	??	??	??

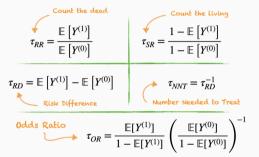
Note that here we do not need the treatment and the outcome in the target population.

The age-old question of how to report treatment effects

$$\tau_{RR} = \frac{\mathbb{E}\left[Y^{(1)}\right]}{\mathbb{E}\left[Y^{(0)}\right]} \qquad \tau_{SR} = \frac{1 - \mathbb{E}\left[Y^{(1)}\right]}{1 - \mathbb{E}\left[Y^{(0)}\right]}$$

$$\tau_{RD} = \mathbb{E}\left[Y^{(1)}\right] - \mathbb{E}\left[Y^{(0)}\right] \qquad \tau_{NNT} = \tau_{RD}^{-1}$$
 Number Needed to Treat
$$\tau_{OR} = \frac{\mathbb{E}[Y^{(1)}]}{1 - \mathbb{E}[Y^{(0)}]} \left(\frac{\mathbb{E}[Y^{(0)}]}{1 - \mathbb{E}[Y^{(0)}]}\right)^{-1}$$

The age-old question of how to report treatment effects



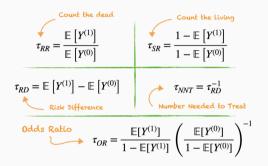
Risk Ratio, odds ratio, risk difference... Which causal measure is easier to generalize?

Bénédicte Co	olnet Julie Josse	Gaël Varoquaux	Erwan Scornet
Measure	Dir. collapsible	Collapsible	Logic-respecting
RD	Yes	Yes	Yes
NNT	No	No	Yes
RR	No	Yes	Yes
SR	No	Yes	Yes
OR	No	No	No

e.g. Huitfeldt et al., 2021; Lapointe-Shaw et al., 2022; Liu et al., 2022; Colnet, et al. J.J. 2022; Colnet, J.J et al. 2023; Boughdiri, J.J et al 2025; Dumas, E., Stensrud (2025) . . .

• CONSORT guidelines recommend to report all of them •

The age-old question of how to report treatment effects



Risk Ratio, odds ratio, risk difference... Which causal measure is easier to generalize?

Bénédicte Co	olnet Julie Josse	Gaël Varoquaux	Erwan Scornet
Measure	Dir. collapsible	Collapsible	Logic-respecting
RD	Yes	Yes	Yes
NNT	No	No	Yes
RR	No	Yes	Yes
SR	No	Yes	Yes
OR	No	No	No

e.g. Huitfeldt et al., 2021; Lapointe-Shaw et al., 2022; Liu et al., 2022; Colnet, et al. J.J. 2022; Colnet, J.J et al. 2023; Boughdiri, J.J et al 2025; Dumas, E., Stensrud (2025) . . .

• CONSORT guidelines recommend to report all of them •

Existing studies have generalized the RD but not other causal measures. Here, we propose

A Unified Framework for the Transportability of Population-Level Causal Measures

First moment population-level measure

• τ^P a 1st moment population-level¹ measure if $\exists \Phi : D_{\Phi} \to \mathbb{R}, D_{\Phi} \subset \mathbb{R}^2$

$$\tau_{\Phi}^{P} = \Phi\left(\mathbb{E}_{P}[Y(1)], \mathbb{E}_{P}[Y(0)]\right)$$

Note that a 1st moment population-level measure depends on a population $P: \tau_{\Phi}^{S} \neq \tau_{\Phi}^{T}$

¹Fav & Li. (2024). Causal interpretation of the hazard ratio in RCTs. *Clinical Trials*.

²Even, J.J. (2025). Rethinking the win ratio: causal framework for hierarchical outcome Analysis.

First moment population-level measure

• τ^P a 1st moment population-level¹ measure if $\exists \ \Phi : D_{\Phi} \to \mathbb{R}, \ D_{\Phi} \subset \mathbb{R}^2$

$$\tau_{\Phi}^{P} = \Phi\left(\mathbb{E}_{P}[Y(1)], \mathbb{E}_{P}[Y(0)]\right)$$

Note that a 1st moment population-level measure depends on a population P: $\tau_{\Phi}^S \neq \tau_{\Phi}^T$

Measure	Effect Measure	Domain D_{Φ}
Risk Difference (RD)	$\Phi(x,y)=x-y$	\mathbb{R}^2
Risk Ratio (RR)	$\Phi(x,y) = \frac{x}{y}$	$\mathbb{R} \times \mathbb{R}^*$
Odds Ratio (OR)	$\Phi(x,y) = \frac{x}{1-x} \cdot \frac{1-y}{y}$	$\mathbb{R}/\{1\}\times\mathbb{R}^*$
NNT	$\Phi(x,y) = \frac{1}{x-y}$	$\{(x,y)\in\mathbb{R}^2 x-y\neq 0\}$

¹Fay & Li. (2024). Causal interpretation of the hazard ratio in RCTs. *Clinical Trials*.

²Even, J.J. (2025). Rethinking the win ratio: causal framework for hierarchical outcome Analysis.

First moment population-level measure

• τ^P a 1st moment population-level¹ measure if $\exists \Phi : D_{\Phi} \to \mathbb{R}, D_{\Phi} \subset \mathbb{R}^2$

$$\tau_{\Phi}^{P} = \Phi\left(\mathbb{E}_{P}[Y(1)], \mathbb{E}_{P}[Y(0)]\right)$$

Note that a 1st moment population-level measure depends on a population P: $\tau_{\Phi}^S \neq \tau_{\Phi}^T$

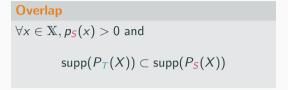
Measure	Effect Measure	Domain D_{Φ}
Risk Difference (RD)	$\Phi(x,y)=x-y$	\mathbb{R}^2
Risk Ratio (RR)	$\Phi(x,y) = \frac{x}{y}$	$\mathbb{R} imes \mathbb{R}^*$
Odds Ratio (OR)	$\Phi(x,y) = \frac{x}{1-x} \cdot \frac{1-y}{y}$	$\mathbb{R}/\{1\} imes\mathbb{R}^*$
NNT	$\Phi(x,y) = \frac{1}{x-y}$	$\{(x,y)\in\mathbb{R}^2 x-y\neq 0\}$

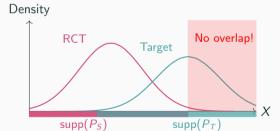
• In contrast an individual-level measure depends on the joint distribution. Most are non identifiable but workarounds exist². Ex: $\mathbb{E}\left[\frac{Y_{i}(1)}{Y_{i}(0)}\right] \neq \frac{\mathbb{E}[Y_{i}(1)]}{\mathbb{E}[Y_{i}(0)]}$ or $\mathbb{P}[Y(1) > Y(0)]$

¹Fav & Li. (2024). Causal interpretation of the hazard ratio in RCTs. *Clinical Trials*.

²Even, J.J. (2025). Rethinking the win ratio: causal framework for hierarchical outcome Analysis.

Assumptions for ATE identifiability in generalization

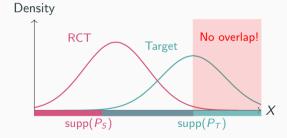




Intuition: Every covariate profile in the target population must be represented in the RCT. We cannot generalize on people not represented in S

Assumptions for ATE identifiability in generalization

Overlap $\forall x \in \mathbb{X}, p_{S}(x) > 0 \text{ and}$ $\operatorname{supp}(P_{T}(X)) \subset \operatorname{supp}(P_{S}(X))$



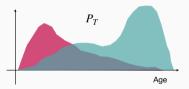
Intuition: Every covariate profile in the target population must be represented in the RCT. We cannot generalize on people not represented in S

Exchangeability in mean

$$\forall a \in \{0,1\}$$
,

$$\mathbb{E}_{\mathbf{5}}[Y(a) \mid X] = \mathbb{E}_{\mathbf{7}}[Y(a) \mid X]$$

In general $\mathbb{E}_{S}[Y(a)] \neq \mathbb{E}_{T}[Y(a)]$ since:



- what about: $\mathbb{E}_{S}[Y(a)|age] = \mathbb{E}_{T}[Y(a)|age]$?
- what if we have $p_s(weight) \neq p_T(weight)$? Intuition: X must contain all shifted and prognostic covariates.

Reweighting the RCT: reweight Horvitz-Thomson

Reweighted Horvitz-Thomson

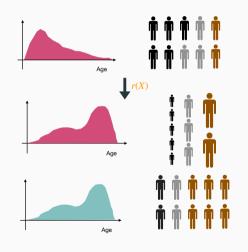
$$\hat{\tau}_{\Phi, \mathsf{wHT}} = \Phi\left(\frac{1}{n} \sum_{S_i = 1} \hat{\mathbf{r}}(\mathbf{X}_i) \frac{A_i Y_i}{\pi}, \frac{1}{n} \sum_{S_i = 1} \hat{\mathbf{r}}(\mathbf{X}_i) \frac{(1 - A_i) Y_i}{1 - \pi}\right)$$

Estimate the ratio of densities with a logistic regression

$$r(X) := \frac{p_T(X)}{p_S(X)} = \frac{\mathbb{P}(X = x | S = 0)}{\mathbb{P}(X = x | S = 1)}$$

$$\stackrel{\text{Bayes}}{=} \frac{\mathbb{P}(S=1)\,\mathbb{P}(S=0|X=x)}{\mathbb{P}(S=0)\,\mathbb{P}(S=1|X=x)}$$

$$\frac{\mathbb{P}(S=0|X=x)}{\mathbb{P}(S=1|X=x)} = \exp(x^{\top}\beta)$$



Transport the RCT: G-formula

Fit models on RCT data
$$\hat{\mu}_a^S(X) = \mathbb{E}_S[Y|A=a,X]$$
Predict on the target data
$$Y(a) = \hat{\mu}_a^S(X) \text{ where } X \sim P_T(X)$$
Average over the target

 $\hat{\tau}_{\Phi,tG} = \Phi\left(\frac{1}{m} \sum_{i} \hat{\mu}_{1}^{S}(X_{i}), \frac{1}{m} \sum_{i} \hat{\mu}_{0}^{S}(X_{i})\right)$

Transported G-formula

$$\hat{ au}_{\Phi, ext{tG}} = \Phi\left(rac{1}{m}\sum_{S_i=0}\hat{\mu}_{(1)}^{ ext{S}}(X_i), rac{1}{m}\sum_{S_i=0}\hat{\mu}_{(0)}^{ ext{S}}(X_i)
ight)$$

Transport the RCT: G-formula

Fit models on RCT data
$$\hat{\mu}_a^S(X) = \mathbb{E}_S[Y|A=a,X]$$
Predict on the target data
$$Y(a) = \hat{\mu}_a^S(X) \text{ where } X \sim P_T(X)$$

Average over the target

$$\hat{\tau}_{\Phi,tG} = \Phi\left(\frac{1}{m}\sum_{i}\hat{\mu}_{1}^{S}(X_{i}), \frac{1}{m}\sum_{i}\hat{\mu}_{0}^{S}(X_{i})\right)$$

X^1	X^2	X^3	Y ⁽¹⁾	Y ⁽⁰⁾
37	2.0	F	$\hat{\mu}_0^S(X_1)$	$\hat{\mu}_1^S(X_1)$
:	:	:	÷	:
52	1.7	М	$\hat{\mu}_0^S(X_m)$	$\hat{\mu}_1^S(X_m)$

Transported G-formula

$$\hat{\tau}_{\Phi, \text{tG}} = \Phi\left(\frac{1}{m}\sum_{S_i=0}\hat{\mu}_{(1)}^{\text{S}}(X_i), \frac{1}{m}\sum_{S_i=0}\hat{\mu}_{(0)}^{\text{S}}(X_i)\right)$$

We use data from the RCT to train $\hat{\mu}_{(1)}$ and $\hat{\mu}_{(0)}$ using

- Linear Regressions
- Random Forests

Proposition

Under a logistic S|X and linear Y(a)|X model for respectively the source and the outcome we have,

$$V_{\Phi,\mathrm{tG}}^{\mathsf{OLS}} \leq V_{\Phi,\mathsf{HT}},$$

3

Doubly robust estimator

Estimated equation estimator

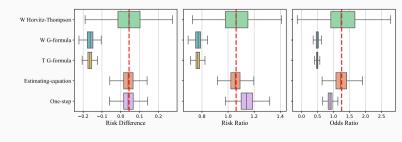
Given estimators $\hat{\mu}_{(a)}$ (resp. \hat{r}) of $\mu_{(a)}$ (resp. r), an estimating equation estimator $\hat{\tau}_{\Phi}^{\rm EE}$ of τ_{Φ} is given by $\hat{\tau}_{\Phi}^{\rm EE} = \Phi(\hat{\psi}_1^{\rm EE}, \hat{\psi}_0^{\rm EE})$ where for all $a \in \{0, 1\}$

$$\hat{\psi}_{a}^{\text{EE}} := \frac{1}{m} \sum_{S_{i}=0} \hat{\mu}_{(a)}(X_{i}) + \frac{1}{n} \sum_{S_{i}=1} \frac{1\{A=a\}}{\mathbb{P}(A=a)} \hat{r}(X_{i}) (Y - \hat{\mu}_{(a)}(X_{i}))$$

Doubly Robust: The estimator $\hat{\tau}_{\Phi}^{\mathrm{EE}}$ is consistent as soon as either $\hat{\mu}_{(a)} = \mu$ or $\hat{r} = r$.

Robust to miss-specification:

- Logistic model on S|X
- Non-linear model on Y(a)|X



Doubly robust estimator

Estimated equation estimator

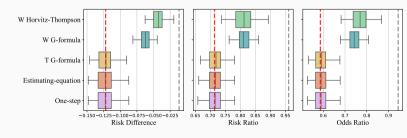
Given estimators $\hat{\mu}_{(a)}$ (resp. \hat{r}) of $\mu_{(a)}$ (resp. r), an estimating equation estimator $\hat{\tau}_{\Phi}^{\rm EE}$ of τ_{Φ} is given by $\hat{\tau}_{\Phi}^{\rm EE} = \Phi(\hat{\psi}_1^{\rm EE}, \hat{\psi}_0^{\rm EE})$ where for all $a \in \{0, 1\}$

$$\hat{\psi}_{a}^{\text{EE}} := \frac{1}{m} \sum_{S_{i}=0} \hat{\mu}_{(a)}(X_{i}) + \frac{1}{n} \sum_{S_{i}=1} \frac{1\{A=a\}}{\mathbb{P}(A=a)} \hat{r}(X_{i}) (Y - \hat{\mu}_{(a)}(X_{i}))$$

Doubly Robust: The estimator $\hat{\tau}_{\Phi}^{\mathrm{EE}}$ is consistent as soon as either $\hat{\mu}_{(a)} = \mu$ or $\hat{r} = r$.

Robust to miss-specification:

- Non-Logistic model on S|X
- Linear model on Y(a)|X



Relaxing exchangeability in mean

Exchangeability in mean

 $\forall a \in \{0,1\}$,

$$\mathbb{E}_{\mathbf{S}}[Y(a) \mid X] = \mathbb{E}_{\mathbf{T}}[Y(a) \mid X]$$

X contains shifted prognostic variables

Exchangeability in effect measure

For a given ϕ , we have

$$\tau_{\Phi}^{\mathrm{R}}(x_c) = \tau_{\Phi}^{\mathrm{T}}(x_c)$$

 X_c contains all shifted effect modifiers. $X_c \subseteq X$

If $Y^{(0)}$ is known in the target population, then the target treatment effect (for a given Φ) is identifiable:

$$\boldsymbol{\tau}_{\Phi}^{T} = \Phi\left(\mathbb{E}_{T}\left[\Gamma\left(\boldsymbol{\tau}_{\Phi}^{S}(\boldsymbol{X}_{c}), \boldsymbol{\mu}_{(0)}^{T}(\boldsymbol{X}_{c})\right)\right], \mathbb{E}_{T}\left[\boldsymbol{Y}^{(0)}\right]\right)$$

where Γ is the inverse of $\psi_1 \mapsto \Phi(\psi_1, \psi_0)$ It leads naturally to:

- Weighted estimators
- Regression-based estimators
- Doubly robust estimators combining both approaches

Estimate the treament effect on the Target pop.

	Observational studies	Gen with Conditional Outcome	Gen with Local effects
Ass.	$Y(1), Y(0) \perp A \mid X$	$\mathbb{E}_{\mathbb{R}}[Y(a)\mid X] = \mathbb{E}_{\top}[Y(a)\mid X]$	$ au_{\Phi}^{\mathrm{R}}(x) = au_{\Phi}^{\mathrm{T}}(x)$
Var.	confounding variables	shifted prognostic covariates	shifted effect modifiers $Y(0)$ in the target population
Meas.	RD, RR ³ but can be extended	RD, RR, NNT, OR, SR,	only Φ

 $^{^3}$ Boughdiri, J.J., Scornet. Estimating Risk Ratios in Causal Inference. ICML2025

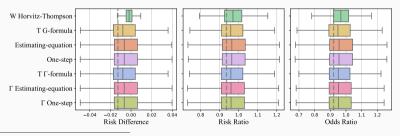
Generalizing CRASH-3 findings to the Traumabase population

CRASH-3 trial (Mostly Pakistan)

- Randomized trial ($n \approx 9,000$)
- Patients with TBI, GCS \leq 12, within 3h
- Treatment: Tranexamic Acid (TXA)
- Outcome: Head injury-related death at 28 days

Traumabase cohort (France)

- Observational registry ($m \approx 8,200$)
- Selected CRASH-3-eligible patients
- Treatment: Tranexamic Acid (TXA)
- Deleterious/No evidence



³Colnet, J.J et al (2023). Causal inference methods for combining randomized trials and observational studies: a review.

Conclusion & Perspectives

- Identification relies on:
 - Exchangeability in mean/effect measure: $\mathbb{E}_{s}[Y(a) \mid X] = \mathbb{E}_{\tau}[Y(a) \mid X]$ or $\tau_{\Phi}^{S}(x) = \tau_{\Phi}^{T}(x)$
 - Overlap: $supp(P_T(X)) \subseteq supp(P_S(X))$

What we did:

- Generalized RD, RR and OR under Overlap and Exchangeability.
- Build and studied weighted, regression and doubly robust estimators.
- Applied this to transported the effect of TXA using CRASH-3 and Traumabase.

Perspectives:

- Relaxing **overlap**.
- Build a R and Python package.
- Meta-analysis [Berenfeld et al., 2025]

Thank you!

References i

[Berenfeld et al., 2025] Berenfeld, C., Boughdiri, A., Colnet, B., van Amsterdam, W. A., Bellet, A., Khellaf, R., Scornet, E., and Josse, J. (2025).

Causal meta-analysis: Rethinking the foundations of evidence-based medicine. arXiv preprint arXiv:2505.20168.